Frequency responses of ground-penetrating radars operating over highly lossy grounds

نویسندگان

  • Ugur Oguz
  • Levent Gürel
چکیده

The finite-difference time-domain (FDTD) method is used to investigate the effects of highly lossy grounds and the frequency-band selection on ground-penetrating-radar (GPR) signals. The ground is modeled as a heterogeneous half space with arbitrary background permittivity and conductivity. The heterogeneities encompass both embedded scatterers and surface holes, which model the surface roughness. The decay of the waves in relation to the conductivity of the ground is demonstrated. The detectability of the buried targets is investigated with respect to the operating frequency of the GPR, the background conductivity of the ground, the density of the conducting inhomogeneities in the ground, and the surface roughness. The GPR is modeled as transmitting and receiving antennas isolated by conducting shields, whose inner walls are coated with absorbers simulated by perfectly matched layers (PML). The feed of the transmitter is modeled by a single-cell dipole with constant current density in its volume. The time variation of the current density is selected as a smooth pulse with arbitrary center frequency, which is referred to as the operating frequency of the GPR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulations of ground-penetrating radars over lossy and heterogeneous grounds

The versatility of the three-dimensional (3–D) finitedifference time-domain (FDTD) method to model arbitrarily inhomogeneous geometries is exploited to simulate realistic groundpenetrating radar (GPR) scenarios for the purpose of assisting the subsequent designs of high-performance GPR hardware and software. The buried targets are modeled by conducting and dielectric prisms and disks. The groun...

متن کامل

Full-Wave Modelling of Ground-Penetrating Radars: Antenna Mutual Coupling Phenomena and Sub-Surface Scattering Processes

Ground-penetrating radar (GPR) technology finds applications in many areas such as geophysical prospecting, archaeology, civil engineering, environmental engineering, and defence applications as a non-invasive sensing tool [3], [6], [18]. One key component in any GPR system is the receiver/transmitter antenna. Desirable features for GPR antennas include efficient radiation of ultra-wideband pul...

متن کامل

Closed-Form Solutions for Broad-Band Equivalent Circuit of Vertical Rod Buried in Lossy Grounds Subjected to Lightning Strokes

Abstract— In this paper, input impedance of a vertical rod under lightning stroke is first computed by applying the method of moments (MoM) on the Maxwell’s equations. The circuit model is then achieved through applying modified vector fitting (MVF) on the computed input impedance. After then the equivalent circuit is again extracted for a few values of soil conductivity and rod radius. Finally...

متن کامل

Field Experiments of a Surface-Penetrating Radar for Mars

Using ground-penetrating radars to investigate the subsurface of Mars will be a key scientific objective over the next several years, especially in light of the large possibility that water could exist within the planet. Radars operating from a few megahertz up to a gigahertz will be able to provide valuable information concerning the subsurface electrical structure at resolutions ranging from ...

متن کامل

A Comprehensive Study of Resistor-Loaded Planar Dipole Antennas for Ground Penetrating Radar Applications

iii Abstract Ground penetrating radar (GPR) systems are increasingly being used for the detection and location of buried objects within the upper regions of the earth’s surface. The antenna is the most critical component of such a system. This thesis presents a comprehensive study of resistor-loaded planar dipole antennas for GPR applications using both theory and experiments. The theoretical a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2002